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Abstract: Many agencies, including the U.S. Army Corps of Engineers, are 
responsible for ensuring that national water quality standards are met. The 
Corps manages and monitors water quality of all waters within Corps 
jurisdictions outlined in Water Quality Management Plans, including 
traditional field sampling (water, sediment, and biological) and measure-
ment of physical parameters. However, these traditional approaches can be 
labor-intensive and expensive, often providing discrete data at a single point 
in space and time and making it difficult to characterize a larger waterbody.  

During the last three decades, remote sensing has experienced an 
increasing role in water quality studies, largely due to technological 
advances, including instrument/sensor and algorithm/image processing 
improvements. The primary strength of remote sensing over traditional 
techniques includes the ability to provide a synoptic view of water quality 
for more effective monitoring of spatial and temporal variation. In 
addition, remote sensing offers capabilities for viewing water quality in 
multiple waterbodies over a large region at one time, a more comprehen-
sive historical record or trend analysis, a planning tool for prioritizing field 
surveying and sampling, and accurate estimations of optically active 
constituents used to characterize water quality. Furthermore, when 
utilized in water quality management planning, remote sensing can help 
reduce costs through minimizing and targeting the collection and 
processing of thousands of water samples. Although the technology is still 
emerging, there is abundant evidence of the usefulness of remote sensing 
in water quality management and monitoring. 

This report examines a variety of remote sensing-related studies in which 
a suite of capabilities are presented. It is intended to serve as a guide for 
determining how remote sensing can complement and enhance traditional 
water quality monitoring and the appropriate level of remote sensing to 
incorporate in a management plan. 

 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

Water quality and the U.S. Army Corps of Engineers 

Water quality monitoring is a fundamental component to the Civil Works 
mission of the U.S. Army Corps of Engineers (USACE). The Corps must 
meet federal, state, and local mandates for water quality standards and 
stewardship responsibilities as described in Engineer Regulation 1110-2-
8154, Water Quality and Environmental Management for Corps Civil 
Works Projects (U.S. Army Corps of Engineers 1995). In addition, Corps 
policy also provides guidance for addressing water quality issues using a 
holistic watershed approach in the Policy Guidance Letter 61, Application 
of Watershed Perspective to Corps of Engineers Civil Works Programs 
and Activities, CECW-AA (USACE 1999) to emphasize watershed 
perspectives with regional dimensions and multipurpose planning within 
individual Civil Works projects. Through the establishment of individual 
Water Quality Programs, the Corps manages and monitors water quality of 
all waters within Corps district jurisdictions outlined in Water Quality 
Management Plans (WQMPs). For example, the Ohio River Water Quality 
Program is responsible for water quality monitoring and management in 
reservoirs, lakes, tributaries, and rivers with Corps-operated flood control 
and navigation structures, which are ultimately conducted by the four 
districts within the Great Lakes and Ohio River Division. The division 
provides 34% of the Corps’ total outdoor recreational opportunities, 
managing more than 16,000 miles of shoreline along 128 lakes and 
navigation pools, as well as maintaining 83 flood control lakes and 
reservoirs for flood risk management.  

Primary monitoring activities include field measurements of physical 
parameters and the collection and laboratory testing of water, sediment, 
and biological samples to ensure compliance with federal, state, and local 
standards, as well as examination of short-and long-term trends related to 
watershed management practices and regulation and operation practices in 
reservoirs, locks, and dams. Periodic collection of samples provides 
historical information to evaluate variations under a wide range of environ-
mental, weather, and climate conditions, allowing project planners to better 
understand factors influencing water quality within a watershed. At each 
project site, periodic field visits and samples are collected from inflow 
streams, tributaries, reservoirs or lake bodies, headwaters, and tailwaters to 
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ensure that water quality management objectives determined for a specific 
project are being met. Although each project site is different, generally 
samples are collected at a minimum of annually or bi-annually; however, 
more intensive sampling may be conducted monthly to multiple times a 
year, budgets permitting. Seasonal considerations are another important 
factor and typically, samples are collected in spring, early summer, late 
summer, and fall to include a wide array of environmental conditions and 
seasonal impacts, such as mid-to late summer during increased eutrophica-
tion, maximum algal concentrations, and minimum water clarity due to 
increased environmental stressors. To accomplish water quality manage-
ment objectives detailed in WQMPs, the Corps collaborates with other 
agencies and organizations participating in water quality monitoring and 
watershed management. Coordination with others allows for full 
consideration of interests and views affecting plans and data requirements. 
This is especially useful for sharing costly and labor-intensive water quality 
data useful for multi-objective project planning. Typical objectives 
determined in WQMPs may include the development and maintenance of a 
customer-responsive program and establishment and maintenance of water 
quality and watershed partners within the district. More specifically, the 
goals include monitoring water quality trends, assessment of surface water 
quality conditions, quantification of water quality concerns, development of 
collaborative teams for restoration when applicable, provision of data to 
support reservoir operations, collaboration for communicating and sharing 
data and resources with other Corps districts and divisions, implementation 
of chemical, biological, etc. teams within the program, and preparation of 
annual technical reports for implementation and direction.  

Specific approaches for water quality sampling include sampling to 
establish baseline conditions at lakes and reservoirs, monitoring for priority 
pollutants, assessing compliance with water quality regulations, developing 
a database for analysis and sharing, investigating water management 
problems, designing modifications, improving procedures, support for 
reservoir regulation, participating in design and engineering of aquatic 
ecosystems and restoration projects, and maintaining environmental 
awareness for watershed management and environmental stewardship. 
Typical samples for water quality monitoring and other field surveying may 
include, but are not limited to, the following: 

 Biological samples: This includes phytoplankton, chlorophyll-a, and 
macroinvertebrate samples, which may be collected throughout the 
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water column and representative sites throughout the project area (i.e. 
macroinvertebrate samples, at inflow and tailwater locations to 
compare with other project sites within the watershed). 

 Water samples: This includes water samples collected at varying 
depths in the water column at select sites throughout the project area 
and year when possible.  

 Field data: This includes measurement of physical parameters such as 
temperature, dissolved oxygen, specific conductivity, pH, turbidity, and 
Secchi depth, which are collected in profile format at water and 
biological sampling locations within the project area.  

 Sediment samples: This includes sediment samples at upper, middle, 
and lower reservoir base sites within the larger reservoir body on a 
multi-year schedule.  

Key parameters affecting water quality in waterbodies are suspended 
sediments (turbidity), algae (i.e. chlorphylls, carotenoids, etc.), chemicals, 
(i.e. nutrients, pesticides, metals, etc.), dissolved organic matter (DOM), 
thermal releases, aquatic vascular plants, pathogens, and oils (Ritchie et 
al. 2003). Of these, the U.S. Environmental Protection Agency (USEPA) 
concludes that suspended sediments, algae, aquatic vascular plants, and 
temperature are related to the major water quality problems (USEPA 
1998). Other special water quality issues in lakes and reservoirs include 
algal blooms (due to increased nutrients), bacterial contamination (i.e. 
fecal coliform bacteria), toxic contaminants (i.e. fish tissue contaminants), 
and invasive species (i.e. hydrilla). 

Real-time proximal and remote monitoring 

Aside from manual field surveying and sampling techniques, other 
approaches to monitor water quality include proximal sensing and remote 
monitoring through specialized equipment and monitoring stations. Real-
time remote monitoring (RTRM) is conducted through in situ monitoring 
stations established at many Corps project sites, such as at the pool above 
dams (headwater), major tributaries and inflows, releases at the dam, and 
tailwaters downstream of the dam. These data are continuously recorded 
and monitored (either onsite or sent to another location) to assist with 
determination of dam and hydropower facility operation and maintenance 
or restoration of water quality conditions. Advances in sensor technologies, 
mobile computing, and wireless communications have led to enhanced 
RTRM (Glasgow et al. 2004). Advantages associated with these improved 
systems include real-time alert notifications during spills or other high-risk 
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events, data streamlining and minimization of human error, time and cost 
reductions, and data quality and quantity improvements. Typically the 
sensors include both meteorological and hydrological sensors coupled with 
advanced computer hardware and software; new systems can be transferred 
via web-based applications within the RTRM network (Glasgow et al. 
2004).  

An example of an RTRM system is the network of stations and automated 
platforms in the Neuse River Estuary Monitoring and Research Program, 
providing real-time data and a web-based warning notification for harmful 
algal bloom, fish kill, and oxygen deficiency monitoring via sophisticated 
sensors and cellular telemetry data download (Glasgow et al. 2004). Other 
examples include RTRM systems for fish detection, fish behavior, and 
automated platforms and autonomous underwater vehicles (AUVs). The 
Corps uses real-time proximal sensing in addition to RTRM stations, 
which refers to the use of instruments to measure phenomena in close 
proximity to a target. An example is a spectroradiometer, which is used to 
measure light reflected and absorbed by components of the water column 
in different wavelengths of the electromagnetic spectrum. These in situ 
measurements include reflectance values collected at a single location and 
are often indicative or characteristic of individual targets or constituents. 
These data can be useful for determining concentrations of water column 
components within the water column and can be collected above and 
below the water surface (Chipman et al. 2009). Furthermore, they are also 
useful for comparison with remotely sensed imagery, and ultimately image 
processing to estimate water quality parameters. 

Remote sensing and water quality 

Conventional in situ water sampling conducted by the Corps is labor-
intensive and costly. Many agencies charged with monitoring water quality 
are facing challenges associated with monitoring more areas with less 
resources and decreased budgets. Therefore, collaboration and data 
sharing with other agencies and organizations are increasingly essential to 
maximize resources. However, in situ measurements are limited because 
they only provide information at a single point in space and time, which 
may not provide the spatial and temporal variation and view of water 
quality in a larger waterbody (Ritchie et al. 2003), and may be especially 
inadequate for characterizing heterogenous waterbodies, such as complex 
Case 2 waters including coastal and inland waters (Liu et al. 2003). For 
more than three decades the use of remote sensing has illustrated a variety 
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of capabilities for assessing water quality through strong correlations 
between remote sensing bands and band ratios (i.e. visible and near 
infrared channels of the electromagnetic spectrum) and optically active 
constituents in complex inland lakes and reservoirs (Chipman et al. 2009; 
Gitelson et al. 1993, 2008; Kallio 2000; Kennedy et al. 1994; Knaeps et al. 
2010; Kloiber et al. 2002a; LaPotin et al. 2001; Olmanson et al. 2008; 
Ritchie et al. 2003; Sawaya et al. 2003; Schiebe et al. 1992; Shafique et al. 
2003; Wang et al. 2004). Although remote sensing has proven useful for 
water quality monitoring, it will never replace traditional field surveying 
and sampling. However, when coupled with such techniques, remote 
sensing can enhance and complement existing approaches to maximize 
resources and cost-effectiveness. Additional advantages of incorporating 
remote sensing in water quality monitoring programs include the 
following:  

1. a synoptic view of a waterbody for more effective monitoring of the spatial 
and temporal variation,  

2. a simultaneous view of water quality in multiple lakes over a large area at 
one time,  

3. a more comprehensive historical record of water quality showing trends 
over time, 

4. a planning tool to prioritize field surveying and sampling locations and 
times, and 

5. an accurate estimation of optically active constituents used to characterize 
water quality (Kallio 2000).  

Many factors affecting water quality can be measured with remote sensing, 
including optically active constituents, referring to those that interact with 
light, thus changing the energy spectra of reflected solar radiation emitted 
from surface waters (Ritchie et al. 2003). These include phytoplankton 
pigments (chlorophylls, carotenoids, phycocyanin, etc.), colored dissolved 
organic matter (CDOM), and inorganic and non-living suspended matter, 
which coincide well with the previously mentioned parameters determining 
the majority of water quality issues in inland waters. In contrast, para-
meters that cannot be measured directly with remote sensing include 
chemicals, pathogens, and acidity because they do not affect spectral 
properties, although they may be inferred from other parameters associated 
with those conditions (Kallio 2000, Ritchie et al. 2003).  
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Remote sensors include airborne (i.e. fixed-wing aircraft) and spaceborne 
(i.e. earth orbiting satellites) platforms, which have both been routinely 
used to assess and interpret water quality in lakes, rivers, and coastal 
estuaries, representing heterogeneous Case 2 waters. These sensors 
measure upwelling radiance from a waterbody at various wavelength ranges 
and spatial resolutions. Often, radiance is converted to reflectance in order 
to compare image scenes acquired under different conditions and derive 
values that are less dependent on weather and illumination (i.e. the ratio of 
upwelling radiance, or light reflected from a waterbody, to the downwelling 
irradiance, or incoming sunlight). In general terms, remote sensing of 
components in the water column is based on how light in different wave-
lengths of the electromagnetic spectrum is absorbed or reflected by those 
components. Solar radiation penetrating the water column can be absorbed 
and scattered by the water, as well as optically active constituents (i.e. 
inherent optical properties of the water column). Therefore, the radiation 
measured by the sensor includes volume information from scattering within 
the water, surface reflection, and radiation from optically active constituents 
reacting within specific wavelengths.  

Interpretation approaches 

There are two types of approaches for interpreting water quality from 
remotely sensed imagery: the (semi-)empirical approach and the 
(semi-)analytical approach (Cannizzaro and Carder 2006, Giardino et al. 
2007, Kallio 2000, Knaeps et al. 2010, Ritchie et al. 2003). Semi-empirical 
and empirical based approaches are the most common and are determined 
through statistical relationships between measured spectral properties (i.e. 
radiance or reflectance) and the measured water quality parameter of 
interest (Ritchie et al. 2003). Examples can be found in many ocean color 
algorithms for derivation of chlorophyll-a concentrations (Chl), which 
illustrate strong correlations between Chl and the blue and green spectral 
regions (i.e. Chl has absorption maxima at 430-450 and 660-680 
nanometers, nm). However, these spectral regions typically do not work 
well for retrieval of Chl in Case 2 waters, which have increased turbidity and 
overlapping absorption of dissolved organic matter and tripton (Gitelson et 
al. 2008). Wavelengths are typically analyzed and selected from regions in 
the spectrum in which reflectance and absorption are strongly impacted by 
the parameter of interest (Kallio 2000). For turbid water environments, 
many algorithms have been developed to retrieve Chl, which are primarily 
based on a band ratio between a reflectance peak near 700 and an 
absorption peak (red Chl absorption band) around 670 - 680 nm 
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(Dall’Olmo and Gitelson 2005). Improvements to this approach have 
examined ways to subtract the effects of other factors on reflectance around 
the peak at 670 nm using a three-band reflectance model (Dall’Olmo et al. 
2003; Gitelson et al. 2003, 2008). In empirical approaches, statistical 
regressions (i.e. linear or multiple) are established between reflectance 
values extracted from the imagery (individual bands, band combinations, or 
ratios) with concurrent in situ water quality measurements for correlation 
and validation (Figure 1).  

 
Figure 1. Example of a linear regression between laboratory-measured 
Chl concentrations in Lake Minnetonka, MN in 2005 with predicted Chl 

estimates using a common near infrared (NIR)/red band ratio 
(705/670 nm); the model illustrates strong correlation between 

measured and predicted estimations with high statistical significance, 
R2 = 0.95, which is a common measure of goodness of fit  

(Chipman et al. 2009). 

Although empirical approaches have been successfully illustrated in many 
studies and are easy to use and apply, the disadvantages are that they 
require in situ sampling for testing and validation and they tend to be scene 
dependent, applying locally to the specific data from which they were 
derived (Giardino et al. 2007, Kallio 2000, Lathrop 1992, Ritchie et al. 
2003). Therefore, application of successful relationships in one project site 
may not apply to a lake or reservoir with different conditions in another 
project site, thus making the results site-specific and not applicable on a 
regional basis. However, regional lake assessments taking advantage of 
more statistically robust models such as the three-band model or semi-
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empirical approaches that involve focusing or tuning spectral regions and 
bands in the statistical analysis (when the spectral characteristics of 
parameters are known) have been successfully conducted for assessment of 
lake water clarity over a large geographic area (Chipman et al. 2009; Kloiber 
et al. 2002a, 2002b; Olmanson et al. 2008). Therefore, in order to 
successfully interpret water quality for a large geographic area in many 
lakes and reservoirs with varying conditions and optical properties, a semi-
empirical approach, positioning spectral bands and widths is useful 
(Chipman et al. 2009, Dall’Olmo and Gitelson 2005, Gitelson et al. 2008).  

Analytical and semi-analytical approaches refer to more complex modeling 
in which water parameter concentrations are physically related to the 
measured reflectance spectra by evaluating their absorption and scatter 
coefficients at multiple wavelengths. Through the use of sophisticated 
radiative transfer equations, relationships between water reflectance and 
the concentration of constituents and their Specified Inherent Optical 
Properties (SIOPS) are established (Giardino et al. 2007, Kallio 2000, 
Knaeps et al. 2010, Ritchie et al. 2003). The process involves inverting the 
radiative transfer equation (typically using hyperspectral imagery) to 
determine water quality parameters. Numerous inversion processes have 
been developed for this purpose (Lee et al. 1999; Mobley et al. 2005) and 
have been shown to optimize unknown parameters when measured input 
are not available (Giardino et al. 2007, Kim et al. 2010, Lee et al. 1999; 
Santini et al. 2010); other attempts have employed the use of look-up tables 
(LUT) (Mobley et al. 2005) and neural network analysis (Doerffer and 
Schiller 1999). Inversion models have been particularly useful for separating 
bottom reflectance from water column spectra, which is especially 
important in shallow waters where the water-leaving radiance/reflectance 
likely contains some spectral information from the bottom reflectance as 
well as the water column (Cannizzaro and Carder 2006; Kim et al. 2010). 
Often, more simple interpretation approaches applied in optically shallow 
waters can lead to overestimation of water column constituents due to the 
increased reflectance values primarily from the bottom reflectance (Lee et 
al. 2001). Therefore, many studies employing empirical approaches remove 
shoreline and shallow-water pixels from consideration (leaving only 
optically deep waters) to avoid this problem (Chipman et al. 2009). 
Analytical and semi-analytical approaches offer the following distinct 
advantages over empirical approaches: 1) they can be used to estimate 
properties of the optical constituents in the water column (for both optically 
deep and shallow waters) and bottom (for optically shallow waters) using 
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physics-based modeling, 2) they can be applied in the absence of in situ 
water quality measurements, making the approach more independent, and 
3) they can be more regionally applied in multiple lakes and reservoirs with 
heterogeneous conditions. Despite these advantages, however, they are 
computationally intensive, making them more expensive and difficult to use 
and requiring knowledge of the inherent optical properties of the 
waterbody. In addition, they typically do not work well with the broad 
spectral bands inherent in multispectral imagery, potentially limiting their 
use. Nevertheless, ongoing research and development in this area is focused 
on making these techniques better suited to operational instruments that 
cover large geographic areas for long-term monitoring (Giardino et al. 
2007) and easier to use, especially with advancements in computer 
technology. 

Many factors contribute to the selection of appropriate imagery and 
analytical methods specific to the goals of individual projects. Selecting 
appropriate sensors, bands, and methods is largely dependent on the size of 
the study area, desired mapping unit/scale/resolution, water quality 
objectives and parameters of interest, cost of imagery and analysis, project 
timelines, and level of expertise. The purpose of this report is to provide a 
review of sensor platforms, analysis methods, and the ability to measure or 
estimate a variety of common, optically active water quality constituents 
that may be useful to address water quality objectives defined by the Corps. 
Included in this review is specific information about the various types of 
sensors, associated costs of the imagery, the types of water quality 
parameters that can be measured with the corresponding sensor, the type of 
processing and methods used to analyze the data, limitations of the 
corresponding sensor, and examples from scientific literature and agency 
reports. 
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2 Airborne Sensors 

Airborne sensors for water quality monitoring 

In the case of water quality monitoring, the primary airborne sensor used is 
a hyperspectral imager, although some studies have utilized aerial photo-
graphy to assess water quality conditions, such as the study done in a 
Wisconsin lake estimating turbidity via suspended solids using aerial photos 
and in situ measurements (Klooster and Scherz 1973). Hyperspectral 
sensors measure upwelling radiance (i.e. from solar radiation) over a 
geographic area in a series of narrow spectral bands. One example is the 
Itres Compact Airborne Spectrographic Imager (CASI)-1500, which is a 
pushbroom sensor featuring up to 288 spectral bands measuring in the 
375-to 1050-nm range at 1.9-nm intervals. Other examples are the Airborne 
Imaging Spectrometer for Application (AISA), which is also a pushbroom 
sensor measuring radiance in the visible and near infrared portions of the 
spectrum (with as many as 512 discrete bands) and HyMap (HyVista 
Corporation), which is a whiskbroom sensor offering 128 bands in the 
450-to 2500-nm range at a 15-to 20-nm bandwidth. Typically these sensors 
are configured to collect fewer bands, which is an advantage of this sensor 
type since bands and band centers can be configured to meet specific project 
needs. Raw data values are generally converted to at-sensor radiance (i.e. 
reflectance at the satellite sensor) using calibration techniques and informa-
tion supplied with the data. Additional information collected onboard the 
aircraft (Global Positioning System and Inertial Navigation Sensor) are used 
for georeferencing and correcting position and orientation (Chipman et al. 
2009). 

Although radiance data can and have been used to interpret water quality, 
in order to conduct multitemporal comparisons across different flight lines 
and image sets, it is necessary to remove atmospheric effects (Hadjimitsis 
and Clayton 2009, Thiemann and Kaufmann 2002). This process involves 
converting the radiance data to reflectance and removing atmospheric 
effects of light passing from the sun to the image scene and back to the 
aircraft. Accurate atmospheric models make it possible to determine 
surface reflectance from the sensor. There are many models for 
atmospheric correction procedures and generally the process is conducted 
in remote sensing software such as in ITT Visual Information Solutions 
(ITT VIS) ENVI and ERDAS Imagine software programs. They include 
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empirical approaches, such as the empirical line approach, requiring field 
spectra for a bright and dark target, atmosphere removal algorithms 
(ATREM) in which no field data are required (common ones developed for 
land include HATCH, ACORN, FLAASH, ISDAS, and ATCOR, which are 
comparable although some include advanced spectral smoothing and 
topographic correction), and lastly, corrections for ocean applications 
employing radiative transfer equations, such as Tafkaa developed by the 
Naval Research Laboratory and WATCOR developed for coastal and lake 
waters (Gao et al. 2009).  

Other considerations for hyperspectral imagery include area of coverage 
(swath) and spatial and spectral resolutions, all of which can be configured 
during mission planning (i.e. pre-planning before a flight to determine 
appropriate survey windows). As previously mentioned, one of the main 
advantages of airborne hyperspectral imagers is that they can be 
configured to match specific project needs. For example, if a specific target 
is being analyzed in a project area, such as a plant species, a priori 
knowledge of the spectral characteristics of that species may be used to 
program the sensor to corresponding band centers or spectral ranges in 
which that species is most sensitive. For water quality, studies have shown 
that sufficient spectral resolution, especially in certain portions of the 
spectrum (i.e. near infrared, 700 to 740 nm), is important for determining 
which parameter can be measured, or conversely, which sensor is most 
appropriate to measure a parameter (Gitelson et al. 2008, Kallio 2000). 
Although wide bandwidths have improved signal-to-noise ratios, they may 
not be appropriate for detection of certain water quality parameters that 
require finer spectral detail; therefore, it may be best to determine which 
water quality parameters are to be measured with the imagery ahead of 
time, otherwise, the imagery may dictate which parameters are possible to 
measure. For hyperspectral sensors having both high spatial and spectral 
resolutions, this is generally not a problem and is another advantage of 
these systems.  

Swath width and spatial resolution are determined by the flying altitude of 
the aircraft. In general, lower altitudes will result in higher spatial 
resolution and a smaller area of coverage, whereas higher altitudes will 
result in lower spatial resolution and a larger area of coverage. These 
specifications are decided during mission planning and are often dictated 
by project requirements and budget constraints. They may also be 
determined by programmatic considerations. Many airborne sensors are 
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utilized in various research efforts and agency programs, such as the U.S. 
Army Corps of Engineers National Coastal Mapping Program (NCMP), 
which uses the Compact Hydrographic Airborne Rapid Total Survey 
(CHARTS) system (Figure 2). CHARTS is an integrated sensor suite, 
featuring a CASI-1500 hyperspectral imager, as well as a topographic and 
bathymetric light detection and ranging (lidar) and RGB digital camera 
(Wozencraft and Lillycrop 2006). The Joint Airborne Lidar Bathymetry 
Technical Center of eXpertise (JALBTCX) uses this system to collect lidar 
elevation data and imagery for a 1-mile swath along the coastal United 
States on a recurring basis to support NMCP activities, such as regional 
sediment management, navigation, environmental restoration, regulatory 
enforcement, asset management, and emergency response activities in the 
coastal zone. Typical CASI configuration in the NMCP includes 36 spectral 
bands with 18-nm bandwith, operating in the 380-to 1050-nm spectral 
range at a 1-m spatial resolution (i.e. 750-m swath width at a flying 
altitude of 700 m); however, these specifications are flexible and can 
change to meet Corps district requirements for a specific project.  

  
Figure 2. Beechcraft King Air 200 (left) and CHARTS instrument in the aircraft (right). 

Airborne case studies 

Many studies have been conducted using airborne hyperspectral sensors 
to interpret water quality in lakes and reservoirs with a variety of 
environmental conditions. One example is a study that was done to assess 
a series of lakes with a wide range of land use and development in 
Fremont, Nebraska. In this study, the AISA sensor was used to acquire 
imagery (Figure 3) in late summer 2005 (2-m spatial resolution, 97 bands, 
at a 3000-m altitude, and clear skies). The recommended band centers for 
aquatic studies are presented in Appendix A. 
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Figure 3. AISA hyperspectral image (false color) over Fremont, NE (left) and a spectral profile 

of a water pixel from the image (right) (Chipman et al. 2009). 

Using a three-band model to estimate Chl and a two-band model to 
estimate total suspended solids (TSS), thematic maps illustrating relative 
concentrations were generated. Equations are as follows: 

 Chlorophyll concentration: α [R-1(λ1) - R-1(λ2)] × R(λ3) (1) 

 Total Suspended Solids: α [R(λ3)/ R(λ4)] (2) 

A detailed description of these equations can be found in Chipman et al. 
(2009) and Gitelson et al. (2008); however, α refers to the total absorption 
and backscattering coefficients, R-1 is the reciprocal of reflectance 
(absorption feature) at wavelengths λ1 and λ2, R is reflectance at wavelengths 
λ3 and λ4, and where λ1 = 665–675 nm, λ2 = 700–710 nm, λ3 = 730–740 nm, 
λ4 = 540–560 nm. Figure 4 illustrates the results from Equation 1. 

 
Figure 4. Chl concentration in Fremont Lakes, NE (Chipman et 

al. 2009). 
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Another study conducted in Germany 
used CASI and HyMap airborne 
hyperspectral imagery to map Secchi 
disk transparency and Chl using a semi-
empirical approach for a range of lakes 
(Secchi disk transparency ranged 
between 0.25 and 8.5 m and depths 
ranged between 3 and 36 m) 
(Thiemann and Kaufmann 2002). CASI 
and HyMap imagery were acquired in 
1997 to 1999 along with in situ field 
measurements (water samples for Chl 
analysis and Secchi disk transparency). 
CASI imagery included 17 bands at 6-to 
25-nm spectral resolution and 3-m 
spatial resolution, whereas the HyMap 
imagery included 28 bands (400- to 
750-nm range) at a 15-nm bandwidth 
and 10-m spatial resolution; both were 
atmospherically corrected (using the 
empirical line approach and the ATCOR 
program). For Secchi disk depth 
transparency (SD), a regression was 
calculated between the in situ SD and 
the spectral coefficient determined 
from the imagery (spectral fitting 
approach at the local minima, 430 nm, 
and longer wavelengths, 750 nm). A high correlation of R2 = 0.85 was 
determined from the regression analysis) (Thiemann and Kaufmann 2002). 
Figure 5 is an example of the map results for the study. 

A final example of airborne hyperspectral imagery comes from a recent 
study done in Italy to measure concentrations of Chl, CDOM, and tripton 
(i.e. the non-living component of total suspended matter) in highly turbid 
lagoon waters (Santini et al. 2010). In this study an analytical approach 
using a nonlinear relationship is determined through a refined physics-
based model. As mentioned previously, the inversion technique is used to 
determine water quality parameters from the hyperspectral imagery – in 
this case, through a two-step optimization method. A bio-optical model is 
further used in optically shallow waters to separate water column versus 

Figure 5. SD estimations from HyMap and CASI 
in Germany, 1997-1999 (Thiemann and 

Kaufmann 2002). 



ERDC/EL TR-11-13 15 

 

bottom cover information. Both data sets can be useful in assessing water 
quality and in this case are used to develop optical waterbody classifications, 
monitor sea/lagoon water mass exchange and river discharge plumes, and 
track the effects of infrastructure to protect areas from sea level rise (Santini 
et al. 2010). Yearly Chl values range between 0.5 and 10.5 mg/m3 (with 
summer peaks above 30 mg/m3); the lagoon is characterized as hydro-
logically complex with heavy river discharges of nutrients, causing gradients 
of plankton, Chl, and suspended matter. The airborne hyperspectral 
imagery acquired for this project included CASI and the Multispectral 
Infrared Visible Imaging Spectrometer (MIVIS). CASI data were collected in 
May 2005 with a 6-m spatial resolution (41 bands in the 472-to 700-nm 
range), while MIVIS data were collected in July 2001 with an 8-m spatial 
resolution (12 bands in the 480-to 700-nm range). Field data were 
simultaneously collected including water surface radiometric data (spectro-
radiometer) for pre-processing of the hyperspectral imagery, as well as 
water samples (i.e. laboratory determination of Chl, CDOM, and tripton), 
and water optical property measurements (i.e. measurement of attenuation 
and absorption coefficients). After atmospheric and geometric corrections 
were made to the imagery, the equations/models for inversion processing 
were applied to determine the parameters (equation descriptions in Santini 
et al. (2010)); however, it consisted of identifying the absorption and 
backscattering spectral coefficients of each parameter and the final result 
illustrating the estimation of the constituents obtained from the corrected 
water leaving reflectance. The optical parameters used in the model were 
derived from the in situ data as well as from the scientific literature (Chl 
absorption feature centered at 673 nm). Figure 6 illustrates the spectral 
results of the in situ derived tripton value versus the model.  

 
Figure 6. Tripton spectral coefficient (in situ vs. model) (Santini et al. 

2010). 
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Hydrolight software was used for the processing in which the bio-optical 
model inputs were used to assess the parameters in more than 500 simula-
tions (simulations account for the variance of in situ measurements). The 
quadratic regression using the CASI data only resulted in an R2 value of 
0.9974 (Santini et al. 2010). Lastly, the two-step optimization (nonlinear 
least squares method) was run using IDL programming language and 
constituent concentration values were estimated for each image pixel to 
produce the maps in Figure 7. 

 
Figure 7. Water constituents (Chl, CDOM, and tripton) from MVIS and CASI (Santini et al. 

2010). 
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Airborne hyperspectral advantages: 

 Airborne hyperspectral sensors are highly flexible and can be tailored, 
including time/date of survey and sensor configuration (bandwidth, 
spectral range, number of bands, spatial resolution, etc.) to meet 
specific project goals, budget constraints, and water quality parameters 
and specific issues; this flexibility is also useful for planning surveying 
in which flights can be scheduled under optimal weather and other 
conditions. 

 When compared to many commercially available satellite sensors, 
airborne hyperspectral sensors have the higher spatial and spectral 
resolutions necessary to identify water quality parameters (Chl, CDOM, 
Tripton, Secchi disk transparency, suspended solids, etc.). 

 Airborne hyperspectral sensors provide sufficient detail to map and 
measure water quality in small waterbodies and contributing 
tributaries. 

 Airborne hyperspectral sensors can be used in both empirical and 
analytical interpretation approaches. 

 Airborne hyperspectral sensors are ideally suited for locally focused or 
comparatively small geographic areas requiring relatively detailed 
spatial resolution with the ability to discern small or complex 
features/parameters; however, they are also feasible in regional 
assessments when flown at higher altitudes to cover larger geographic 
areas. 

Airborne hyperspectral disadvantages: 

 Although capabilities for processing hyperspectral imagery have greatly 
improved, when compared to other image types, processing of 
hyperspectral images is more complex and requires specific skills. 

 Airborne surveys can be challenging to plan, involving many factors 
such as solar conditions, tides, flight line orientation, air traffic 
restrictions, and weather. 

 When compared to other commercially available satellite sensors, 
airborne hyperspectral sensors cover smaller geographic areas due to a 
lower altitude of acquisition. 

 Airborne surveys are typically expensive; one study cited average costs 
of $350 per square mile (Chipman et al. 2009). 
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3 Spaceborne Sensors 

Spaceborne sensors for water quality monitoring 

Like airborne sensors, spaceborne sensors are passive and measure 
reflected solar radiation; however, these sensors tend to have comparatively 
coarser spatial and spectral resolutions, covering larger geographic areas. 
Many satellite remote sensing systems are commercially available ranging 
from expensive for higher resolution systems (i.e. $2-10K per scene) to low-
cost or free for moderate (i.e. Landsat) and global systems (i.e. MODIS and 
MERIS). One major advantage is that many spaceborne sensors have 
consistently frequent coverage (i.e. revisit frequency) of the earth’s surface 
because they rely on orbital patterns of the satellite. Although subject to 
cloud cover constraints (most providers consider 20% cloud cover or less 
acceptable), the increased temporal frequency of the sensors works well for 
studies requiring regular coverage for monitoring water quality trends. 
Most of these sensors are referred to as multispectral because they measure 
relatively few, broad spectral bands when compared to hyperspectral 
sensors; however, there is currently one commercially available hyper-
spectral sensor (Earth Observing – 1 Hyperion Imager, 30-m spatial 
resolution). Some of the more common multispectral sensors suitable for 
water quality monitoring are listed in Table 1. Most of these sensors were 
developed for terrestrial-based applications; however, newer sensors like 
WorldView-2 and MERIS have included “coastal” bands, which are 
beneficial for aquatic studies and have been used in various studies to 
illustrate successful interpretation of water quality parameters (Gitelson et 
al. 2008; Kallio et al. 2005; Marchisio et al. 2010). Note that some of these 
sensors lack blue bands or middle infrared and thermal bands, which can be 
useful for estimating water clarity and improving classification accuracy 
(Chipman et al.2009). The high resolution sensors provide the advantage of 
high spatial resolution making it possible to identify pond and wetland 
features as small as 1 ha; yet, there is a tradeoff with limited spatial coverage 
in which case these sensors may be better suited for project-scale analysis 
rather than regional. Furthermore, all of these systems have the disadvan-
tage of decreased spectral resolution as compared to any hyperspectral 
system. Also, all of these sensors have predetermined lifespans (i.e. Landsat 
7 was launched in 1999 with a 5-year lifespan), although many have outlived 
these lifespans (i.e. Landsat 5 was launched in 1984 with a 3-year lifespan 
and is celebrating more than 25 years of operation). To continue such 
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efforts, NASA and the U.S. Geological Survey have partnered to form the 
Landsat Data Continuity Mission ensuring future Landsat satellite missions. 
Other upcoming sensors include GeoEye-2 with a 0.25-m spatial resolution 
and expected launch in 2013, as well as Digital Globe’s Worldview-3 with 
very high spatial resolution measuring eight bands and expected to launch 
in 2014. 

Table 1. List of common multispectral sensors including high resolution (pink), moderate resolution (blue), and 
regional/global resolution (green). Note that “Pan” refers to a panchromatic band, which is a higher resolution 

grayscale image covering the red, green, and blue portions of the spectrum and is used in combination with 
multispectral bands to sharpen the image. Units are as follows: nm = nanometers, m=meters, and 

km=kilometers.  

Satellite/Sensor Spectral Bands Spatial Resolution 
Swath 
Width 

Repeat 
Orbit 

Digital Globe 
WorldView-1  

Pan (400 - 900nm) 0.5m 17.7km 1.7 days 

Digital Globe 
WorldView-2  

8 (400-1040nm)/1 Pan( 450-800nm) 1.85m/0.46m 16.4km 1.1 days 

Digital Globe 
Quickbird 

4 (430-918)/1 Pan (450-900nm) 2.62m/0.65m 18km 2.5 days 

GeoEye Geoeye-1 4 (450-920nm)/1 Pan (450-800nm) 1.65m/0.41m 15.2km <3 days 

GeoEye IKONOS 4 (445-853nm)/1 Pan (526-929nm) 3.2m/0.82m 11.3km ~3 days 

Spot Image SPOT-5 3 (500-890nm)/1 Pan (480-710nm) 
/1 SWIR (1580-1750nm) 

5m/10m/20m 60km 2-3 days 

Landsat-7 ETM+ 6 (450-1750m)/1 Pan (520-900nm) 
/1 (2090-2350nm)/1 (1040-1250nm) 

15m/30m/60m 183km 16 days 

Landsat-5 TM 5 (450-1750m)/1 (2080-2350nm) 
/1 (1040-1250nm) 

30m/60m 185km 16 days 

MODIS 2 (620-876nm)/5 (459-2155nm) /29 
(405-877nm and thermal)  

250m/500m/1000m 2330km daily 

MERIS 15 (390-1040nm) 300m 1150km daily 

Specific costs of the imagery are not provided in Table 1 because many of 
the archived data are available to the Corps at no costs, as dictated in 
policy guidance (Army Regulation 115-11, Geospatial Information and 
Services, which directs the Corps to submit imagery requirements to the 
Army Geospatial Center (AGC)). The AGC Imagery Office serves as the 
Army’s Executive Agent for commercial imagery and has an agreement 
with the National Geospatial-Intelligence Agency (NGA), allowing for the 
acquisition of archived, unclassified imagery at no cost to the services and 
intelligence communities. The NGA awards contracts to high-resolution 
commercial data providers, such as GeoEye and Digital Globe, making 
much of this data free to the Corps. This agreement does not include 
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airborne hyperspectral or low-resolution data providers. Some of these 
sensors can be “tasked,” meaning that requests can be made to the AGC to 
request acquisitions in designated locations in advance of a project; 
however, national security concerns override civil priorities.  

Spaceborne case studies 

Many studies have proven that Landsat imagery can be used to assess water 
quality using empirical based approaches (Kloiber et al. 2002a, 2002b; 
Mancino et al. 2009; Olmanson et al. 2008; Wang et al. 2004); however, 
some have illustrated that these approaches may be limited to the data from 
which they were derived and thus, may not be applicable to other lakes 
(Giardino et al. 2007, Kallio 2000, Lathrop 1992, Ritchie et al. 2003). 
Successful regional approaches were demonstrated by Kloiber et al. (2002a, 
2002b) and Olmanson et al. (2008) in which Landsat imagery was used to 
assess thousands of lakes in Minnesota. This work culminated in a 20-year 
historical perspective of water clarity in over 10,000 lakes (larger than 8 ha) 
in Minnesota (1985-2005) and was conducted in cooperation with the 
University of Minnesota Remote Sensing and Geospatial Laboratory and the 
Minnesota Pollution Control Agency and is available online, 
http://water.umn.edu/ (Chipman et al. 2009, Olmanson et al. 2008). Similar 
statewide efforts have occurred in Wisconsin in cooperation with the 
University of Wisconsin and the Wisconsin Department of Natural 
Resources (http://www.lakesat.org/), as well as in Michigan in cooperation with 
the U.S. Geological Survey and the Michigan Department of Environmental 
Quality (http://pubs.usgs.gov/fs/2007/3022/). The statewide efforts provide a good 
example of regional water quality assessments conducted with inexpensive 
techniques and free imagery; archived Landsat imagery is free and can be 
acquired from the U.S. Geological Survey’s EROS Data Center website.  

In Minnesota lakes as in many areas, the prime issue is trophic state, 
which can be indicated by chlorophyll-a (Chl), total phosphorous (TP), and 
Secchi disk transparency (SD) (Olmanson et al. 2008). This study involved 
calibrating Landsat TM imagery with in situ field measurements of SD to 
estimate Landsat-derived SD using a regression equation. The mapped 
distributions and estimates were converted to a Trophic State Index based 
on the transparency TSI(SD) (Carlson 1977). It is noted that factors other 
than phytoplankton abundance measured by Chl can affect SD (e.g., humic 
color, non-phytoplankton turbidity, and suspended sediments). Therefore, 
this study reported results based on the SD calibrations as Landsat-
derived estimates or TSI(SD), which is an index based on transparency 
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(Olmanson et al. 2008). Imagery for this study included Landsat 4, 5, and 
7 over a 20-year period, including mostly cloud-free scenes between July 
and September. Note that Landsat 7 (since 2003) has the scan-line 
corrector turned off due to a malfunction; however, this is not an issue for 
regional water quality studies requiring only a representative number of 
pixels from a waterbody. The summer timeframe is often targeted for 
water quality studies because variability in lake clarity is at a minimum 
and water clarity is usually the worst (Olmanson et al. 2008). In general, 
paths of consecutive imagery were chosen because they were collected at 
the same time affording advantages with image processing and model 
accuracy. Over 100 scenes were analyzed. In situ data were obtained from 
water quality measurements collected through statewide programs and 
volunteer efforts, and data collected within ±3 days of satellite overpass 
were used in the regression (Olmanson et al. 2008). Image samples were 
taken from each lake, focusing on lake centers where reflectance from the 
bottom, shoreline, and other targets would not impact the signal. Image 
scenes were mosaicked and haze was removed to create an “open-water-
only” image (an unsupervised classification technique was used to group 
land versus water pixels). Spectral information from the open water only 
pixels was used to develop relationships with SD. Log-transformed SD 
data were treated as the dependent variable and Landsat TM band 1 and a 
TM1:TM3 ratio were treated as the independent variable in a least-squares 
multiple regression: 

 ln(SD) = a(TM1/TM3) + b(TM1) + c (3) 

where a, b, and c are coefficients fit to the calibration data by the regression 
analysis, ln(SD) is the natural logarithm of SD for a lake, and TM1 and TM3 
are the Landsat brightness values (digital numbers) for the chosen lake 
pixels in the blue and red bands, respectively (Olmanson et al. 2008). 
Although a pixel-based map could have been generated for each lake, a 
single Landsat-derived SD value was assigned to a lake polygon (i.e. as a 
representative value for each lake). Regression models were generated for 
each Landsat path and showed strong relationships between in situ 
measurements and imagery-derived values (R2 values ranged from 0.71 to 
0.96). Figure 8 shows the map results for the state of Minnesota. This study 
illustrates that it is possible to accurately estimate water clarity using 
moderate resolution, multitemporal imagery over a large geographic area 
with a wide variety of lake conditions without collecting any new in situ 
data. Furthermore, it was conducted using free imagery and simple, robust 
techniques that do not require advanced computing power.  
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Figure 8. Water clarity estimates in Minnesota derived from Landsat imagery (Olmanson et al. 2008). 

Other studies to assess water quality have been conducted with high-
resolution remote sensing systems, such as IKONOS (Ekercin 2007, 
Ormeci et al. 2009, Sawaya et al. 2003). Similar empirical methods can be 
applied to high-resolution imagery as moderate resolution imagery, 
although these data have the added advantage of improved spatial 
resolution and thus, can resolve water quality in small lakes, ponds, rivers, 
etc. Even though these sensors have limited spectral ranges and 
resolutions (i.e. IKONOS has four broad multispectral bands measuring in 
the 445-to 853-nm range), their spectral resolution is sufficient for 
measuring concentrations of such parameters as SD, Chl, and TSS. One 
example study conducted in a region of Turkey successfully illustrated the 
use of IKONOS imagery to retrieve such parameters over a large water 
area in Istanbul (Ekercin 2007). IKONOS-2 imagery from June 2005 was 
radiometrically corrected and converted to radiance units in ERDAS 
Imagine software. Multiple regressions were established with the radiance 
data and collected water quality data using the following equation: 
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where WQP = water quality parameter, IKONOS = radiance of 4 bands, k = 
IKONOS band number, and A0 and Ai = empirical regression coefficients 
derived from in situ observations. Individual bands used in the analyses 
were B1 (445-530nm), B2 (520-610nm), B3 (640-720nm), and B4 
(770-880nm) with a 5 X 5 filter to obtain average radiance values in close 
proximity to in situ measurements. In situ measurements (SD, Chl, and 
TSS) were collected from nine stations located in the Golden Horn area in 
Istanbul during the image acquisition. Relationships were established for all 
four bands of IKONOS data: for SD, B1-3 resulted in an R2 = 0.9893, for Chl 
all bands resulted in an R2 = 0.9924, and for TSS all bands resulted in an R2 
= 0.9724. Table 2 shows in situ measurements as compared to those 
extracted from the IKONOS imagery for all nine stations. Figure 9 shows 
the map results for Chl and TSS estimations in the Golden Horn. 

Other studies have utilized regional and global sensors (MODIS and 
MERIS) (Chipman et al. 2009, Gitelson et al. 2008, Koponen et al. 2002). 
These sensors have limited spectral resolution and coarse spatial resolution 
(Table 1) ranging from 250 to 1000 m, so they are only appropriate for large 
aquatic systems (200 to 1000 ha or larger); however, they have frequent 
coverage that is daily and are either low-cost or free. They are subject to the 
same cloud cover constraints as other spaceborne systems, yet the MERIS 
system operates in an “on demand” mode in which imagery is collected 
based upon request rather than continuously (Chipman et al. 2009). The 
most useful MODIS bands are 1 to 5 and 8 to 16, and the 1000-m spatial 
resolution for bands 8 to 16 makes only the largest lakes in the upper  

Table 2. In situ SD, Chl, and TSS compared to IKONOS-derived estimations (Ekercin 2007). 
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Figure 9. Water quality constituents measured with IKONOS imagery in Istanbul (Ekercin 2007). 

Midwest suitable for this sensor (Chipman et al. 2009). Like Landsat, 
MODIS data are freely available online and served by a number of sources 
(such as the NASA Earth Observing System Data Gateway website); 
furthermore, an atmospherically corrected image product is also available. 
For a study in Minnesota and western Ontario, MODIS imagery was 
acquired in 2005 (both the radiance and atmospherically corrected 
reflectance products) to coincide with a large field sampling effort, collec-
ting over 100 samples to measure Chl and water clarity (Chipman et al. 
2009). The lakes in the region cover a wide variety of Chl, CDOM, SS, and 
water clarity conditions. Image processing included unsupervised 
classifications to eliminate cloud and haze as well as separate land versus 
water pixels. A buffer was applied to water pixels in order to eliminate those 
pixels in shallow-water areas or close to the shoreline. At each in situ 
sample site, the spectral signatures were extracted from the MODIS 
products. Then, regression models were run to correlate MODIS bands and 
band ratios with the natural logarithm of Chl concentration. Lastly, the 
models were applied to individual pixels to predict Chl concentration. The 
best results were achieved with the Terra MODIS radiance product and the 
blue/red ratio (MODIS band 3 divided by band 1), R2 = 0.79. This was 
improved to an R2 = 0.84 when two additional band ratios were included 
(band 3/band 2 and band 3/band4). A subset of the region is shown in 
Figure 10, illustrating Chl concentrations estimated from the Terra MODIS 
imagery.  
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Figure 10. Estimated Chl concentration for an area along the 

Minnesota/Ontario border from MODIS imagery (Chipman et al. 2009). 

Spaceborne advantages: 

 Spaceborne sensors have a high revisit frequency ranging from daily to 
monthly, making multitemporal water quality studies to examine 
trends and patterns possible (cloud constraints can render scenes 
useless, so scenes must be examined to determine acceptable use). 

 Many commercially available sensors have very high spatial resolutions, 
ranging from 0.5 m to 10 m (Worldview-2, Woldview-1, Quickbird, 
GeoEye-1, IKONOS, SPOT-5, etc.), which make it possible to examine 
water quality in small waterbodies and tributaries; thus, these sensors 
are typically better suited to local or project level applications. 

 Moderate, regional, and global sensors cover large geographic areas in 
one scene and are better suited to regional water quality studies. 

 When compared to hyperspectral sensors, image processing tends to be 
less complex with spaceborne sensors, requiring a more basic remote 
sensing knowledge level. 

 Moderate, regional, and global spaceborne sensors are typically low-
cost or free, making remote sensing of water quality a more viable and 
cost-effective option. 

Spaceborne disadvantages: 

 Multispectral spaceborne sensors have coarse spectral resolutions and 
some have limited coverage of the electromagnetic spectrum, 
eliminating the important blue band; this may mean that some sensors 
are not suitable for a particular water quality parameter measurement. 
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 High spatial resolution imagery can be very expensive (~ $2-10K per 
scene); however, the Corps has agreements in place making much of 
this imagery freely available. 

 In general, empirical-and semi-empirical-based approaches can be 
used to analyze multispectral imagery (excluding spaceborne 
hyperspectral sensors); this can be problematic in optically shallow 
waters, in which reflectance from the bottom contributes to the water-
leaving reflectance, potentially resulting in over-estimation of water 
quality parameter concentration. 

 Although some sensors can be “tasked” through requests to the Army 
Geospatial Center (national security concerns have priority), project 
managers and researchers are limited to the coverage schedule of the 
satellite, including weather/cloud constraints; this can be challenging 
when trying to conduct water quality monitoring at a certain time of 
the year or dealing with project schedules. 
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4 Considerations in Collecting Data 

In situ data considerations 

The studies described in this report as well as most remote sensing-based 
studies detailed in scientific literature involve the use of in situ water sample 
data to either calibrate models or verify results. This is especially true for 
studies employing empirical-and semi-empirical-based approaches in which 
in situ data are required (whereas analytical approaches can be used 
without in situ data, although in situ data are often used to validate results). 
This may be seen as a limitation because collection of samples is time-
consuming and they are costly to process; however, these studies have also 
shown that it can take few in situ samples to characterize a large waterbody 
(Ekercin 2007). There is no set standard for the number of samples 
required to adequately interpret an image scene or characterize a water-
body, yet some have suggested appropriate schemes for lakes (Karabork 
2010). Some studies have utilized fewer than 10 samples to characterize a 
single waterbody, while others have used hundreds to characterize 
thousands of lakes. While there is no rule for the number of samples 
required, studies described in this report illustrate the importance of collec-
ting samples that adequately cover the range of water quality conditions to 
capture the variety. Studies such as Nelson et al. (2003) have illustrated that 
remotely sensed imagery (in this case, Landsat) to measure water quality 
can be sensitive to the distribution of water clarity used in the calibration 
process. Therefore, emphasis should be placed on the number of samples to 
capture the variability of a waterbody or waterbodies; in highly variable 
systems this may mean that more samples are required and will depend on 
the project area or region under study. The other important aspect of in situ 
sampling is the timing of samples. In order to use in situ measurements in 
the image calibration process, they must be collected around the time of 
image acquisition. There is no set standard for the number of days within a 
satellite overpass a sample must be taken. One study cited in this report 
(Olmanson et al. 2008) tested samples taken within 3 days versus 10 days 
and found that samples taken 10 days out yielded unacceptable R2 results. 
The timing of samples will vary with any project and is determined by the 
short-term variability of the system in question, as well as the range of 
variability within multiple waterbodies for regional assessments. Although 
sample collection is time-consuming and expensive, many studies take 
advantage of the increasing number of water sampling activities, volunteer 
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efforts, and state-run programs to monitor water quality including the 
regular collection of samples. Since the 1980s many programs to monitor 
water quality have been established and make their data freely available. 
The use of these data in place of newly acquired samples can keep costs low, 
although there are limitations, such as the types of parameters measured 
and when they are collected, which may not fit with the goals and schedule 
of a remote sensing study. In situ samples for use in remote sensing studies 
should include measurement of chlorophyll-a, total suspended solids, 
turbidity, and Secchi disk depth/transparency (Kallio 2000). Additional 
sampling could include algae biomass, species composition, mineral 
suspended solids, dissolved organic matter, and the absorption coefficients 
from filtered samples as a result of aquatic humus (Kallio 2000). Most 
remote sensing approaches are empirically based; therefore, sampling at the 
surface (0 to 0.5 m) is typically sufficient. However, if analytical approaches 
are used, samples from varying depths in the water column may be useful. 

Special water quality events  

Water quality events such as harmful algal blooms (HABs) have attracted 
recent attention within the Corps due to their widespread impacts (Linkov 
et al. 2009). In the event of an HAB, algae multiply and, in the case of 
freshwater, commonly consist of cyanobacteral algae (blue-green). These 
events can cause reductions in dissolved oxygen and release toxins, which 
can cause fish kills and are becoming an increasing concern in Corps Civil 
Works projects (Linkov et al. 2009). Linkov’s 2009 technical note found 
that reservoirs can be conducive to HABs for the following reasons: 
1) residence time affects turnover rates of algae and nutrients in which algal 
accumulation is the result of growth rate outpacing flushing rate, 
2) stratification can increase algal growth when it takes advantage of vertical 
temperature gradients to promote growth, 3) light can promote growth 
when the intensity of light striking the surface is greatest, and 4) certain 
temperature ranges can be favorable for individual species. Chemical factors 
can also influence the growth rate of algae, such as nitrogen and 
phosphorous loading, especially in freshwater systems (Linkov et al. 2009). 
The Corps manages factors influencing HAB development by altering water 
flow, increasing shear forces, enhancing mixing, and controlling water 
intake and mixing to influence stratification in the water column. The report 
also includes input from Corps districts, recommending management of the 
upper watershed to reduce nutrient loading as well as other management 
practices (Linkov et al. 2009). Remote sensing can be useful in these 
integrated management strategies to assist with short- and long-term 
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monitoring. Early warning systems and identification and quantification of 
land use and cover within the watershed are two ways in which remote 
sensing can be coupled with existing management strategies; these methods 
are further described in the following section. 

Remote sensing studies have 
focused on using imagery to 
identify the optical signature 
of cyanobacteria, which is 
strongly influenced by the 
photosynthetic biomarker 
pigment, C-phycocyanin (C-
PC), having an absorption 
maximum near 615 nm 
(Hunter et al. 2008). In this 
case, C-PC can be used as an 
index of cyanobacterial 
abundance, estimating C-PC 
concentration in lakes where 
phytoplankton assemblages 
are dominated by 
phycocyanin-rich 
cyanobacteria using semi-
analytical and semi-empirical 
approaches (Hunter et al. 2008; Simis et al. 2005). These studies illustrate 
the wide range of capabilities of remote sensing to monitor cyanobacteria, 
ranging from the use of airborne hyperspectral (CASI) imagery in a series 
of small lakes in England (Hunter et al. 2008) to the use of global MERIS 
imagery in large turbid lakes in the Netherlands (Simis et al. 2005). 
Figure 11 depicts a time-series estimating C-PC in England using CASI 
imagery.  

Other uses for remote sensing in water quality monitoring 

Remote sensing of water quality includes more than just examining the 
waterbody in question. It is well-known that water quality is directly tied 
to the surrounding land use and cover (LULC) within a watershed 
(Basnyat et al. 1999). Remote sensing can be especially useful to assess 
watershed conditions on a regional scale, especially for examining the 
effects of non-point source pollution (Griffith 2002). Updated LULC data 
derived from remote sensing are essential for developing landscape-scale 

Figure 11. CASI-derived time series illustrating C-PC 
distribution in England, 2005 (Hunter et al. 2008).  
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analyses that can be directly tied to physical changes, patterns of 
discharge, temperature and light regimes, chemistry, and input of 
nutrients and sediments (Griffith 2002). Many studies have illustrated the 
integration of remote sensing to study the impacts on water quality 
(Herlihy et al. 1998, Griffith et al. 2000). For example, studies have 
mapped impervious surfaces in a watershed and related water quality 
issues (Sawaya et al. 2003). When coupled with Geographic Information 
Systems (GIS), land cover can be accurately quantified for a better 
understanding of landscape patterns and spatial heterogeneity (Turner 
and Carpenter 1998). Landscape metrics are computed to quantify 
landscape patterns such as habitat fragmentation or contiguity; in turn, 
these metrics are indicative of landscape dynamics contributing to water 
quality. Furthermore, LULC changes can be analyzed over time to better 
understand the relationship of landscape metrics to water quality. Simple 
band ratios such as the Normalized Difference Vegetation Index (NDVI), 
NDVI = (NIR –Red)/(NIR + Red), have shown sensitivity to biophysical 
characteristics of vegetation, such as net primary production, and can be 
useful in assessing watershed health (Jones et al. 1996).  

Other studies focus on identifying surrounding wetland and submerged 
aquatic vegetation (SAV) habitat, which are known to be indicators of 
ecological health and subsequently respond to subtle changes in 
hydrologic regime due to corresponding changes in LULC (i.e. increased 
stormwater runoff as a result of increased impervious surface). Traditional 
field surveys can be difficult, as these habitats may be inaccessible and 
time-consuming. Remote sensing offers an alternative to identify habitats 
and assess condition and diversity. One such study used high-resolution 
IKONOS imagery in Swan Lake in Minnesota, which is a deep freshwater 
marsh with a variety of emergent and submergent aquatic vegetation 
providing wildlife and fish habitat (Sawaya et al. 2003). Field reference 
data were collected with a Global Positioning System (GPS) shortly after 
the 2001 imagery were acquired to identify the aquatic vegetation types 
directly on the IKONOS imagery. Spectral signatures of the aquatic 
vegetation were also analyzed to identify potentially different types prior 
to field investigation, especially targeting emergent vegetation types. A 
hydroacoustic survey was used to collect depth and plant depth for SAV 
(118 sites were surveyed). Similar methods developed at the U.S. Army 
Engineer Research and Development Center (ERDC) illustrate the use of 
the patented Submersed Aquatic Vegetation Early Warning System 
(SAVEWS) to measure canopy geometry using a digital signal processing 
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algorithm; the system has been used to identify SAV, early infestations of 
nuisance aquatic plants, and bathymetry beneath the canopy (Sabol et al. 
2002). The imagery was classified to mask out terrestrial features, leaving 
water and wetlands only (using spectral differences), followed by 
separation of submergent and emergent wetlands using an unsupervised 
classification approach (10 classes). A second unsupervised classification 
was conducted on the emergent vegetation only (100 classes); however, 
due to some confusion between vegetation types, further stratification was 
conducted (Sawaya et al. 2003). This third unsupervised classification 
focused on separating thick submergent from emergent confused classes. 
The field data were used to validate the presence of five emergent, two 
submergent, and one thick submergent vegetation types to classify the 
images with an overall accuracy of 79.5%. Figure 12 illustrates the results. 
New techniques using hyperspectral imagery fused with lidar bathymetry 
are being explored at the ERDC to detect and discriminate SAV and 
macroalgae species (Reif et al., in preparation). 

  
Figure 12. Submergent and emergent aquatic vegetation mapped using IKONOS imagery in 

Swan Lake, MN, 2001 (Sawaya et al. 2003). 

Nuisance aquatic vegetation (weeds) is also commonly monitored in lakes 
and reservoirs (Ritchie et al. 2003). Such vegetation can either be rooted 
or free-floating, causing such problems as clogging reservoirs and reducing 
recreational usage. A study conducted by the U.S. Department of 
Agriculture, Kika de al Garza Agricultural Research Laboratory, used GIS, 
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GPS, and remote sensing to detect noxious aquatic weeds (i.e. hyacinth, 
hydrilla, and giant salvinia) in Texas. These species have replaced native 
plant populations, adversely affecting fish habitat and populations, as well 
as impacting drainage and reducing recreation. Airborne and field-based 
methods were employed in this study (Everitt et al. 1999); however, 
multispectral and hyperspectral imagery are increasingly used to detect 
aquatic vegetation taking advantage of high spatial and spectral 
resolutions (Everitt et al. 2008; Phinn et al. 2008; Pinnel et al. 2004; Reif 
et al., in preparation). The studies in Texas revealed spectral differences in 
the near-infrared region of the spectrum, which are used to identify the 
various species. An updated study in 2008 utilized Quickbird imagery to 
successfully identify giant salvinia infestation in the Toledo Bend 
Reservoir in east Texas (Figure 13) (Everitt et al. 2008). 

  
Figure 13. Quickbird false-color image (a) and unsupervised classification map (b), showing 
giant salvinia (pink), mixed woody vegetation (red), mixed aquatic vegetation (green), and 

water (blue) in Toledo Bend Reservoir, TX (Everitt et al. 2008). 

Topographic and bathymetric elevation characteristics are also important 
for understanding water quality. In the case of watershed assessments, 
Digital Elevation Models (DEMs) are used to calculate slope and identify 
erosion potential. When combined with LULC, DEMs can also be used to 
highlight problems such as clear cuts on steep slopes, agricultural 
practices on steep slopes, and other practices around stream headwaters 
that might contribute to runoff and nutrient loading within a tributary, 
and eventually a waterbody. These data can also be used in hydrologic 
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models to delineate catchments within watersheds and model runoff when 
combined with LULC. The ERDC has developed a suite of hydrologic 
modeling tools useful for examining water quality. One example is the 
Trophic Assessment Screening Tool for Reservoirs (TASTR), which 
provides a rapid, initial estimation of water quality conditions that can be 
expected at a project site as a result of LULC, climate, or reservoir 
operational (i.e. water level) changes. This GIS-based management tool 
provides a way of evaluating management approaches under various 
alternatives. Another example is the Adaptive Hydraulics-Comprehensive 
Aquatic Systems Model (ADH-CASM), which is an integrated model 
featuring hydrological and ecological frameworks. It has a variety of 
potential uses, such as examining potential ecological impacts due to 
restoration or diversion projects, as well as calculating flows, velocities, 
depths, and transported and non-transported constituents, showing 
bioenergetic parameters and trophic relationships.  

Bathymetric data are important for understanding water quality issues, 
especially in cases where parameters may be depth-dependent. In 
analytical and semi-analytical approaches, bathymetric data or depth can 
be used as a fixed constraint in the inversion of the radiative transfer 
equation for improved optimization (Kim et al. 2010). A study conducted 
in Hawaii by the JALBTCX used airborne CHARTS data (see Airborne 
Sensors for Water Quality Monitoring) to collect topographic lidar for 
characterizing topography as well as bathymetric lidar and hyperspectral 
imagery for characterizing shallow coastal areas including depth, bottom 
reflectance, a+bb measuring absorption and backscattering in the water 
column, and water column volume reflectance (Wozencraft et al. 2008). In 
addition, Liu et al. (2003) explain that bathymetry is a commonly used 
ancillary data type that is useful in water quality modeling. When 
combined in a GIS, remote sensing imagery, water sampling data, and 
bathymetry can be integrated for better quantification and visualization of 
water quality parameters (Liu et al. 2003). Furthermore, including 
bathymetric data is important for understanding the movement and 
transport of water constituents and for estimating constituents in complex 
Case 2 waters (Liu et al. 2003). 

Temperature is another parameter that can be detected using remote 
sensing and can play a role in water quality monitoring. In the case of 
thermal pollution, anthropogenic activities, such as discharge from a 
power plant, can change the temperature of a waterbody and impact 
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biological activities. Remote sensing is used to map that discharge, 
providing information about the spatial and temporal variation of thermal 
releases, which in turn can be used to provide estimates useful for 
interpreting results of mathematical models of thermal plumes (Ritchie et 
al. 2003). The MODIS sensor has thermal infrared bands for measuring 
surface water temperature (Chipman et al. 2009). Landsat-5 TM imagery 
has also been used to derive surface temperature in lakes in Italy using a 
scene-independent procedure, whereby the Planck law (describing 
radiation emitted from a black body) is inverted using the atmospherically 
corrected radiances in TM band 6 (Giardino et al. 2001). The Landsat-
derived temperature had a root mean square error (RMSE) of 0.328°C as 
compared to the in situ measurements. Figure 14 shows the mapping 
results of both the MODIS-and Landsat-5 TM-based studies. 

   
Figure 14. MODIS-derived (left) and Landsat-5 TM-derived (right) surface temperatures 

(Chipman et al. 2009; Giardino et al. 2001, respectively). 
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5 Summary and Conclusions 

The role of remote sensing in water quality studies has increased over the 
last 30 years, paralleling its technological advances, including both 
instrument/sensor and algorithm/image processing improvements, and 
illustrating its evolutionary development in water quality studies. Many 
agencies, including the Corps of Engineers, have responsibilities to ensure 
that water quality standards are met. For example, the USEPA not only 
develops regulations to ensure those standards, but also administers the 
National Aquatic Resource Surveys, providing conditional reports of the 
nation’s coasts, lakes, rivers, streams, wetlands, and wadeable streams. 
Furthermore, the USEPA (Ecological Exposure Research Division) 
contributes to technological advances, such as the development of water 
quality indicators using remote sensing (Frohn and Autrey, draft internal 
report; Shafique et al. 2003). In this initiative, the agency develops and tests 
models used for monitoring, assessing, and quantifying the spatial and 
temporal distribution of parameters with remotely sensed imagery, and 
develops a library of indicators estimable with remotely sensed data. The 
U.S. Geological Survey also develops remote sensing techniques for water 
quality measurement, such as predicting water clarity in Michigan’s inland 
lakes (greater than 25 acres). This study (in cooperation with the Michigan 
Department of Environmental Quality), uses techniques modeled after 
Olmanson et al. (2008) to assess water clarity through the Lake Water 
Quality Assessment Monitoring Program (Fuller and Minnerick 2007). The 
Michigan maps and data are available online through an Internet Mapping 
Service (IMS) interactive website, showing secchi-disk, chlorophyll-a, and 
trophic state index values for Michigan lakes between 2001 and 2006. The 
growing number of agency initiatives and cooperatives are important for 
continued development of remote sensing technology in water quality 
monitoring as the techniques continue to evolve. Although research and 
development continue to prove that this technology is still emerging, 
evidence for the usefulness of remote sensing in water quality management 
and monitoring is abundant.  

Traditional sampling schemes are time-consuming and expensive. Other 
disadvantages can include inaccessibility and the limitation of providing 
discrete data at only a single point in space and time, making it hard to 
characterize a larger waterbody. Although remote sensing can never fully 
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replace field sampling methods, many studies have proven the successful 
utility of remote sensing in water quality monitoring using a variety of 
sensor types, interpretation techniques, and geographic areas for potential 
use in both project-level (i.e. Corps Civil Works projects) and regional 
assessment efforts (i.e., USEPA National Aquatic Resource Surveys). The 
primary strengths of remote sensing over traditional techniques are two-
fold:  

1. Spatial variability: Remote sensing can be used to illustrate and measure 
the spatial variability of water quality over an entire waterbody using 
limited, but appropriate, in situ sampling data (i.e. the samples do not 
necessarily have to be numerous, but must represent the full range of 
water quality conditions present in the imagery being assessed).1  

2. Temporal variability: Remote sensing can be used to illustrate and 
measure temporal variability using limited, but appropriate, in situ 
sampling for multiple image scenes, providing trend analyses (i.e. the 
ability to model water quality for as many time sequences from which data 
and imagery are available). 

In the case of these two primary strengths, remote sensing offers the 
capability to be more cost-effective and time-efficient because thousands 
of samples do not have to be collected and processed to compare with 
modeled remote sensing results (derived using fewer samples), and 
multiple field survey efforts throughout the year do not have to be 
conducted to compare with the more frequently modeled remote sensing 
results that can be derived from a wide array of available satellite and 
airborne sensors (with a frequent revisiting cycle, historical archive, and 
flexible collection, respectively). Considering these two advantages alone, 
remote sensing offers capabilities that cannot be duplicated with 
traditional sampling methods.  

This report examines a variety of remote sensing-related studies in which a 
suite of capabilities were presented; however, they may not represent the 
full range of capabilities in a growing body of scientific literature and 
programmatic efforts to use remote sensing to assess complex Case 2 
waters. Many considerations must be weighed to determine the appropriate 
use of remote sensing in any water quality management initiative. Some of 
these considerations include project budget and timeline, staff skill level 

                                                                 

1 Personal Communication. 2010. Brad Autrey, USEPA Ecological Exposure Research Division. 
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and ability to collaborate with other technical groups (i.e. for remote 
sensing software/hardware), water quality management goals, and the 
ability to integrate with other water quality sampling activities (i.e. for 
sharing and acquiring existing in situ data). These considerations can help 
determine the appropriate level of remote sensing to incorporate in a 
management plan. Alternative approaches for the use of remote sensing 
may include monitoring land use and land cover practices in a watershed, 
mapping indicator and nuisance vegetation species, targeting or prioritizing 
field sampling locations using imagery as a first pass to monitoring quality, 
integrating topographic and bathymetric data, and using sophisticated 
modeling techniques for early warning and alternative scenario-based 
planning. This report should serve as a guide for determining how remote 
sensing, in cooperation with the Civil Works mission of the Corps, can 
complement and enhance traditional water quality monitoring.  
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Appendix A: AISA Spectral Band Configuration 

AISA spectral band configuration for a 97-bandset recommended for using 
in aquatic studies (Chipman et al.2009) 
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